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We critically analyze the possibility of finding signatures of a phase transition by looking exclusively at
static quantities of statistical systems, like, e.g., the topology of potential energy submanifolds(PES’s). This
topological hypothesis has been successfully tested in a few statistical models but up to now there has been no
rigorous proof of its general validity. We make a new test of it analyzing the, probably, simplest example of a
nontrivial system undergoing a continuous phase transition: the completely connected version of the spherical
model. Going through the topological properties of its PES it is shown that, as expected, the phase transition
is correlated with a change in their topology. Nevertheless, this change, as reflected in the behavior of a
particular topological invariant, the Euler characteristic, is small, at variance with the strong singularity ob-
served in other systems. Furthermore, it is shown that in the presence of an external field, when the phase
transition is destroyed, a similar topology change in the submanifolds is still observed at the maximum value
of the potential energy manifold, a level which nevertheless is thermodynamically inaccessible. This suggests
that static properties of the PES’s are not enough in order to decide whether a phase transition will take place;
some input from dynamics seems necessary.
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I. INTRODUCTION

In a series of interesting papers[1–5] which appeared in
the last few years the possibility has been advanced that
phase transitions may be signaled by suitable changes in
some topological properties of the configuration space mani-
fold. This implies a different approach to phase transitions
from the classical one based on singularities of thermody-
namic potentials. The topological hypothesis implies a static
point of view on phase transitions for it is based only on
properties of static quantities, like the potential energy mani-
fold. Under rather general conditions dynamics seems to play
no role [7]. This is clearly a strong assumption and, if con-
firmed at least for a restricted class of systems, should pro-
vide a new and powerful approach to understand the micro-
scopic mechanisms underlying a phase transition. Up to now
the topological hypothesis has been verified in a few models,
most notably the HamiltonianXY mean field model[4,8], the
two-dimensional latticef4 model [3], the k-trigonometric
model [5], and recently in the Bishop-Peyrard model of
DNA denaturation[6]. The topology of these models was
investigated by calculating a topological invariant, the Euler
characteristicxsvd defined on submanifoldsMv of the poten-
tial energy manifold: Mv;hqPRNuVsqdøvj, where
Vsq1, . . . ,qNd is the potential energy function of the system.
In all the previous models the Euler characteristic shows a
strong singularity at a critical levelvc in correspondence with
the critical values of the energy and temperature at the phase
transition ec=Tc/2+kvsTcdl fkvsTcdl=vcg. In the Hamil-
tonian XY mean-field model and in thek-trigonometric
model, which is also a mean-field one, it was observed that
limN→`s1/Ndlnuxvu is singular atvc. After this evidence the

question that remains to be answered refers to the necessary
and sufficient conditions in order that a topology change of
submanifolds of the configuration space reflects the presence
of a phase transition. Recently a theorem was proved stating
that a topology change of configuration space is in fact nec-
essary[9,10] for a phase transition to occur. The theorem
covers a wide class of systems with smooth, finite range, and
confining potentials bounded from below. But although at a
phase transition a topology change must necessarily happen,
the converse is not true. For it is known that topology
changes are common in configuration space while they do
not necessarily imply the presence of a phase transition. The
next, more difficult task is to find sufficient conditions in
order to relate topology changes with phase transitions. Up
to now the only hints about what those conditions could be
come from the observed behavior in the exactly solvedXY
andk-trigonometric models. Specially after the results in the
XY model the authors conjectured that to entail a phase tran-
sition the topology change must involve the attachment of
handles ofOsNd different types on the same critical level[4].
We will show below a much simpler system undergoing a
phase transition in which this mechanism is not present.

In this work we study the connection between the topol-
ogy of the potential energy manifold and the thermodynam-
ics of a very simple model: the completely connected ferro-
magnetic spherical model. The potential energy manifold of
this system is a hypersphere and its topology is therefore
trivial. We first discuss the model without an external field.
The critical points of the energy function within the domain
of the spherical constraint are two isolated symmetric
minima corresponding to the ground states of the system and
a highly degenerate maximum. There are no saddle points.
The submanifoldsMv at fixed v correspond to two discon-
nected sN−1d-dimensional disks, joining each other and
completing the whole sphere at the maximum levelvc. This
level coincides with the critical value obtained from thermo-
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dynamics implying the coincidence between the topology
change, the closing of the hypersphere, and the phase transi-
tion, in agreement with the topological hypothesis. Neverthe-
less, we will see that the Euler characteristic presents at best
only a small discontinuity at the transition point and also
only one handle is attached at the upper critical level which
corresponds to the phase transition. This suggests that the
sufficiency condition discussed above does not necessarily
relate with the behavior of the Euler characteristic at the
transition. In fact the topology change at the transition level
in this model seems to be small in the sense that only one
handle is attached in order to complete the whole manifold.
Then we discuss the model in the presence of an external
field. The topology is essentially the same as in the previous
case, except that the symmetry between the two minima is
broken. Now one minimum is the ground state and the other,
a metastable state. We show that a topology change still ex-
ists where the hypersphere closes itself, but more impor-
tantly, this sector of the manifold is inaccessible to the physi-
cal system. As a consequence, this topology change(similar
to the one occurring when there is no external field) cannot
be related with a phase transition, which in fact is destroyed
by the presence of a finite field. In order to conclude this we
need to add some information from the whole problem
—e.g., knowledge of the caloric curve, which depends on the
dynamics. This suggests that topology alone may be not
enough to decide whether a phase transition will take place
for a given interaction potential.

II. MODEL

We studied the completely connected version of the clas-
sical spherical model introduced by Berlin and Kac[11]. It
consists of a set ofN classical spin variableshsi PR , i
=1, . . . ,Nj which interact through the potential energy func-
tion,

V = −
J

2N
o
iÞ j

N

sisj − Ho
i

N

si , s1d

and the spins are subject to a spherical constraint

o
i=1

N

si
2 = N. s2d

The exchange couplingJ.0 corresponds to a ferromagnetic
interaction,H is an external field, and the factor 1/N in the
energy function is needed in order to make the model exten-
sive in the thermodynamic limit.

The thermodynamics of the model can be computed ex-
actly following closely the original solution of Berlin and
Kac for the finite-dimensional version.

A. Zero external field

For H=0 a saddle point approach leads to a Curie-Weiss
critical point atbcJ=1, whereb=1/T. The internal energy
per particle behaves as

v = 5 1

2b
−

J

2
, T , Tc,

0, T . Tc.

s3d

Consequently at the critical point the mean potential energy
is vc;vsbcd=0 as shown in Fig. 1.

This is the relevant information needed on the phase tran-
sition in this model in order to test the topological hypoth-
esis. Below it is shown that the levelvc corresponds to the
maximum of the potential energy per particle and precisely
at this level a topological change takes place in the submani-
folds Mv.

B. Finite external field

The saddle point approach whenHÞ0 leads to a saddle
point equation which has a finite solution for any finite tem-
perature. Consequently the phase transition is destroyed by
the field[11]. In the thermodynamic limit the internal energy
per particle is given by

v =
1

2b
− Jzs −

H2

4Jszs − 1/2d
, s4d

wherezs is the solution of the saddle point equation:

1

zs
+

bH2

2Jszs − 1/2d2 − 2bJ = 0. s5d

A plot of the internal energyv as a function ofb=1/T is
shown in Fig. 2. Whenb→`, v→−3/2, which is the energy
of the ground state forH=1. Forb→0, v→0, a value below
the maximum of the potential energy per particle which is
vmax=H2/2=1/2 inthis case. The conclusion is that the sys-

FIG. 1. Internal energy per particle as a function of inverse
temperature in the completely connected spherical model for zero
external fieldsJ=1d.

FIG. 2. Internal energy per particle as a function of inverse
temperature for an external fieldH=1 sJ=1d.
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tem is unable to reach the levels of potential energy above
v=0, for arbitrarily growing temperature. This is connected
with the fact that the phase transition is absent whenH is
finite. This behavior is reflected in the topology of the acces-
sible submanifolds of potential energy, as will be seen below.

III. CRITICAL POINTS AND TOPOLOGY OF THE
POTENTIAL ENERGY MANIFOLD

A. Zero external field

From the previous definition of the model it is clear that
the whole energy manifold is a hypersphere inN dimensions
or, in topological language, ansN−1d-sphere. At a given
level of potential energyv the accessible submanifold is rep-
resented by the intersection of the energy surface(1) with the
hypersphere. The topology of the energy function is easily
revealed by diagonalizing the quadratic form. We can write
[11]

o
i,j

sisj = sTMs, s6d

with M the symmetric matrix with all elements equal to 1
except for the diagonal ones which are zero. This matrix is
symmetric and is therefore diagonalized by means of an or-
thogonal transformationV such that

MV k = lkVk, VTV = V−1V = I, s7d

whereVk is thek column of the transformation matrix.
Applying this transformation toM :

sTMs = o
i=1

N

liyi
2, s8d

wherey=VTs. The spherical constraint is invariant:

o
i=1

N

si
2 = o

i=1

N

yi
2. s9d

From now on we will work in the base which diagonalizes
M . The eigenvaluesli can be readily computed:

l1 = N − 1,

lk = − 1, k = 2, . . . ,N. s10d

The matrixM possesses one single positive eigenvalue and
N−1 negative degenerate ones. In the basehyij the energy
function can be written

V = −
JsN − 1d

2N
y1

2 +
J

2N
o
iù2

yi
2. s11d

For simplicity in what follows we fixJ=1. Now the energy
per particle is limited between 1/2N−1/2øvø1/2N or, in
the thermodynamic limit, −1/2øvø0. In order to get the
critical points of V on the sN−1d-sphere we introduce a
Lagrange multiplier to enforce the spherical constraint and
define

F = V + mSo
i=1

N

yi
2 − ND . s12d

Now the critical points are given by]F /]yi =0, which give

S2m −
N − 1

N
Dy1 = 0,

S2m +
1

N
Dyi = 0, i Þ 1. s13d

From this we have two possibilities, eitherm=sN−1d /2N,
which gives two isolated minimahy1= ±ÎN,yi =0,i Þ1j, or
m=−1/2N, which giveshy1=0,oiÞ1yi

2=Nj, corresponding to
a degenerate maximum, completing thesN−1d-sphere. Con-
sequently, the potential energy manifold has only two critical
submanifolds corresponding to the minimum and maximum
values of the function. There are no saddle points. This struc-
ture is trivial and allows us to visualize immediately the
topology changes as the levelv is increased. This triviality is
a property of the completely connected model only. In finite
space dimensionality the potential energy manifold is more
complex and already ford=1 it shows a nontrivial structure
of saddle points[12].

The natural framework for analyzing the relation between
critical points and topology changes in a manifold is Morse
theory[14]. Because of the simplicity of the spherical model,
one can make a very intuitive analysis of the topology
changes in this case without resorting to Morse theory. The
topology of the model is analyzed in the context of Morse
theory in the Appendix.

Although we are interested in the behavior of the system
for high dimensionalityN, there is only one direction—
namely,y1—which breaks the spherical symmetry of the po-
tential energy function and the problem can then be effec-
tively analyzed in a two-dimensional plane spanned byy1
and any other orthogonal direction. Without loss of general-
ity, we will consider directly the case withN=2.

In Fig. 3 the evolution of the submanifoldsMv is shown
for four increasing values ofv. The top left panel corre-
sponds to a levelv below the minimum of the potential en-
ergy per particle,v,−0.25. In this case the manifold is
empty; this is a forbidden region for the system. As the sys-
tem crosses the levelv=−0.25 a first topology change hap-
pens(top right panel). At this level two points are accessible
in configuration space, the symmetric ground states of the
system. Above this level the submanifoldMv is diffeomor-
phic to two disconnected(hyper)disks (in high dimensions).
This situation is represented by the bottom left panel in Fig.
3. Note that in theN=2 case the submanifolds corresponding
to a particular level setv are represented by four points,
while the submanifoldsMv are the fraction of the two semi-
circles for which Vsqd /Nøv. No more topology changes
happen in the submanifolds until the maximum value of the
potential v=0.25 is reached and the whole circle(sphere)
becomes accessible. The bottom right panel illustrates the
situation for a levelv slightly below the maximum. Atv
=0.25 a new topology change happens; the two disconnected
sectors of the submanifoldsMv meet each other and com-
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plete the manifold, which, for theN particles system, is the
sN−1d-sphere. The maximum of the potential energy per par-
ticle, vc=1/2N, tends to zero in the thermodynamic limit and
coincides with the mean potential energy at the phase transi-
tion described in Eq.(3) and Fig. 1. This shows that the
phase transition takes place at the levelvc where a topology
change in the potential energy submanifolds happens. This is
what is expected according to the topological hypothesis.
The evolution in the topology of the submanifoldsMv as the
level v grows also illustrates in a nice way how the different
sectors of the manifoldM become gradually accessible to the
physical system. From the ground states, the only accessible
at zero temperature, two symmetric regions of the
(hyper)sphere become gradually accessible in accordance
with the symmetry breaking nature of the phase transition in
this model. In the thermodynamic limit the two regions re-
main disconnected until the phase transition atvc, where the
(hyper)sphere is completed, the two hemispheres connected,
and the whole configuration space manifold becomes acces-
sible to the system.

This is a simple and completely intuitive example of the
topological hypothesis at work. Nevertheless, although it was
already expected that a topology change must take place in
correspondence with a phase transition[9], a yet open ques-
tion regards the kind of topology change that might imply a
phase transition. The example of the completely connected
spherical model is again useful in this respect. At variance
with what was observed in previously studied models, in this
case it is clear that the topology change at the transition is
not a strong one, at least as quantified by the change in the
Euler characteristic, which is calculated in the Appendix.

There we show that the Euler characteristic is a constant
equal to 2 for 1/2N−1/2øv,1/2N and jumps to zero at
vc=1/2N whenN is even or does not change at all forN odd.
Clearly, from the point of view of the behavior of the Euler
characteristic the change in topology is not a strong one. In
the next section we consider the model in the presence of an
external fieldH which destroys the phase transition and ana-
lyze the consequences in the topology of the configuration
space.

B. Finite external field

WhenHÞ0 the energy function in the diagonal basis can
be written

V = −
JsN − 1d

2N
y1

2 − ÎNHy1 +
J

2N
o
iù2

yi
2. s14d

The extrema of this function evaluated on the
(hyper)sphere are the same extrema ofF=V+msoi=1

N yi
2−Nd.

They are given by the solutions of

S2m −
N − 1

N
Dy1 = HÎN,

S2m +
1

N
Dyi = 0, i Þ 1. s15d

There are two possibilities as in the zero-field case: either
m=−1/2N or mÞ−1/2N. In the first case the solution is
hy1=−HÎN,oiù2yi

2=Ns1−H2dj. In the second case we obtain

FIG. 3. (Color online) Evolu-
tion of the potential energy mani-
fold of the N=2 spherical model
for four levels v=V/N. The col-
ored dashed lines represent the
spherical constraint(a circle for
N=2) and a particular level set of
the functionv. The real submani-
folds depend on the levelv and
are the continuous black sectors.
Top left: v=−0.325, the manifold
is empty. Top right:v=−0.25, the
manifold emerges at the two black
dots (ground states). Bottom left:
v=−0.075, two symmetric sectors
of the sphere are accessible. Bot-
tom right: v=0.2, near the transi-
tion the manifold is nearly com-
pleted and a large fraction of the
sphere is accessible.
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hy1= ±ÎN,yi =0∀ i ù2j. Similarly to the caseH=0 there are
two minima and a continuously degenerate maximum. The
two minima now correspond to a single absolute minimum
hy1=ÎN,yi =0∀ i ù2j and to a local minimumhy1=−ÎN,yi
=0∀ i ù2j. The corresponding energies per particle arev1
=−sN−1d /2N−H andv2=−sN−1d /2N+H, respectively. The
other critical point is in fact a critical manifold at the maxi-
mum of the energy given byv3=H2/2+1/2N. In the thermo-
dynamic limit the potential energy per particle isH2/2, a
level that is never reached by the system, as shown in Sec.
II B.

In Fig. 4 it is shown the evolution of the submanifoldsMv
for four increasing values ofv. One immediately recognizes
the asymmetry introduced by the external field, which in
these figures isH=0.1. The top left panel shows the level
where the potential energy manifold emerges, corresponding
to the ground state, which in this case is unique. Atv=H
−1/4 thesecond minimum touches the sphere. This is shown
in the top right panel. As the potential energy grows two
disconnected regions are present, while only one of them is
accessible dynamically in the thermodynamic limit. In the
bottom right panel it is shown the situation at the maximum
thermodynamically accessible level. The energy per particle
of the maximum forN=2 is vmax=H2/2+1/4 andgoes to
H2/2 in the thermodynamic limit. Nevertheless, the results
from the thermodynamics of Sec. II B predict that the energy
per particle reaches a maximum at infinite temperature which
is zero, as shown in Fig. 2. Consequently the closing of the
sphere is never reached by the system; the field introduces a
gapDv=H2/2 in the energy per particle that the system can
never cross. The situation at the highest physically accessible
level is represented in the bottom right panel of Fig. 4. One

is led to the conclusion that the only topology changes in the
presence of a finite external field are at the levels where the
minima appear and that no other topology change takes place
at higher levels ofv, provided one restricts the analysis to the
physically accessible region of the potential energy manifold.
This is in agreement with the absence of a phase transition in
this case: no topology change⇒no phase transition. Never-
theless, this reading of the results is biased by oura priori
knowledge of the thermodynamics of the system. In case the
thermodynamics would not be known one could be led to the
wrong conclusion that a phase transition might take place in
correspondence with the maximum level of the potential en-
ergy manifold, where a topology change certainly happens.
This suggests that topology alone is not enough in order to
conclude if a phase transition will or will not take place in a
particular system.

IV. CONCLUSIONS

The simplicity of the completely connected spherical
model allows a critical analysis of some important open
questions regarding the validity of the topological hypoth-
esis. Due to its high level of symmetry, it is possible in this
model to intuitively follow the relation between the topology
of the accessible manifold at any given energy level and its
physical or thermodynamic behavior. In particular, the rela-
tion between the topology and the symmetry breaking tran-
sition in zero field is nicely illustrated: the phase transition
takes place in the thermodynamic limit, at the level where
the whole manifold, the hypersphere, becomes accessible. At
this level a simple topology change takes place: the comple-
tion of the hypersphere. While this is in agreement with a

FIG. 4. (Color online) Evolu-
tion of the potential energy mani-
fold of the N=2 spherical model
for four levels v and an external
field H=0.1. The colored dashed
lines represent a particular level
set of the functionv and the
spherical constraint(the circle).
The real submanifolds are the
continuous black sectors. Top left:
the ground state emerges(unique
black dot). Top right: a second lo-
cal minimum emerges while the
accessible submanifold is the con-
tinuous black arc at the right of
the sphere(circle). Bottom left: at
a still higher levelv the submani-
fold consists of two disconnected
arcs. Bottom right: the highest
thermodynamically accessible
level v=0.25. Note that the sphere
is not fully accessible.
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recently proved theorem which asserts the necessity of a to-
pology change in order for a system to have a phase transi-
tion, in this case the change is very small at variance with
results from other previously studied models. Small topology
changes can take place in general with no correlation with a
phase transition. This is observed for example in the one-
dimensionalXY model [4].

One can also draw some conclusions regarding the behav-
ior of the model in the presence of an external field. In this
case the comparison between thermodynamics and topology
of the potential energy manifold can shed some light on the
typical behavior of systems in a field. From a topological
point of view few changes occur in the structure and evolu-
tion of the submanifoldsMv. For HøJ the degeneracy be-
tween the two minima is broken in a single ground state and
a single local minimum, and a third topology change hap-
pens when the hypersphere is closed at the highest energy
level. From this behavior one should be tempted to predict a
phase transition similar to that in the zero-field case. Never-
theless, thermodynamics tells clearly that this is not the case;
there is no phase transition in the presence of a field and the
mean potential energy does not reach the top level of the
potential energy manifold even at infinite temperature, a gap
proportional to the square of the field amplitude existing.
Consequently, to correctly read the information it is neces-
sary to go through thermodynamics. It seems unlikely that
knowledge of the topology of the potential energy manifold
alone is enough in order to predict the existence of a phase
transition in a generic many body system. The results pre-
sented in this work suggest that more information, coming
from dynamics, is needed. Results from other models are
clearly needed in order to settle this fundamental question
[15]. Perhaps the strongest result predicting dynamical be-
havior exclusively from a static property is the celebrated
Adam-Gibbs relation between relaxation time scales and
configurational entropy in glasses[13]. It predicts a diver-
gence of relaxation times when the configurational entropy
Sc associated with the number of minima of the potential
energy function goes to zero. To our knowledge this predic-
tion has never been obtained from first principles and even
quantitative comparison with experiments and simulations is
not conclusive.
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APPENDIX

In this appendix we analyze the topological evolution of
the accessible manifold as the potential energy of the system
is being increased from its minimum. The complete manifold
M for the system is thesN−1d-sphere. The function we de-
fine on it is V, the potential energy function. For a given
value of the potential energy per particlev=V/N, the sub-
manifold of accessible configurations is given byMv=hy
PM uVsyd /Nøvj. We thus analyze the behavior of the Euler

characteristic for the submanifoldsMv for eachv, xsMvd,
which is a topological invariant[14]. It is defined as

xsMvd = o
i=0

N−1

s− 1dibi , sA1d

wherebi are the Betti numbers or the number ofi-handles
that compose the manifoldMv. According to Morse theory,
there is a connection between the topological transitions in a
manifold and the critical points of a function defined on it.
One of the results of Morse theory concernsxsMvd and is
expressed by

xsMvd = o
i=0

N−1

s− 1dibi = M−1sVd. sA2d

In caseV has only isolated critical pointsM−1sVd is given by

M−1sVd = o
i=0

N−1

s− 1dimi , sA3d

with mi being the number of critical points ofV with index i
that belong toMv. The index of a critical point is the number
of negative eigenvalues of the HessianH of the function at
this point. In order to investigate the critical points of
Vsy1, . . . ,yNd constrained to the manifoldM, we make the
analysis on the transformF defined in Eq.(12). In what
follows we will analyze the casesH=0 andHÞ0.

1. Zero external field

As we have seen forH=0 the functionF possesses two
critical levels. One of them givesv=V/N=−sN−1d /2N cor-
responding to two isolated critical pointshy1= ±ÎN,yi =0,i
Þ1j. It is possible to verify that there is no real intersection
between the manifoldM and the(hyper)surfaces of constant
potential energy forv,−sN−1d /2N (see top left panel in
Fig. 3). The accessible submanifoldMv for v,−sN−1d /2N
is empty, and the Euler characteristic is then identically zero:
xsv,−sN−1d /2Nd=0. The Hessian ofV is diagonal in the
basehyij. For the two critical points appearing atv=−sN
−1d /2N the eigenvalues ofH are given by

h1 = 0,

hi = 1, i Þ 1. sA4d

The Hessian has no negative eigenvalues. The indexes of
both critical points are thus zero. The Euler characteristic is
then xsMvd=s−1d02=2. From v=−sN−1d /2N while
v,1/2N we have no other critical levels, and thusx must
remain constant up tov=1/2N.

At vc=1/2N the solutions of Eqs.(13) are hy1=0,oi=2
N yi

2

=Nj, ansN−2d-dimensional critical sphere. In fact, since we
have already seen that atv=1/2N the manifold completes
itself into the (hyper)sphere M, we know that xsMvd
=xsMd=xsSN−1d , ∀vù1/2N. The Betti numbers for the
sphere are well known: anN-sphere is composed of a
0-handle and of anN-handle. The Euler characteristic for the
sN−1d-sphere is then
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xsSN−1d = H2 if N odd

0 if N even.
sA5d

Although xsMvd may not change atvc for odd N, one
knows that a topology change takes place on that level. This
result is not contradictory since the behavior of a single to-
pological invariant is not always enough in order to fully
characterize the topology of a manifold.

2. Finite external field

For H.0 the pointshy1= ±ÎN,yi =0,i Þ1j still are solu-
tions. However, the pointy1= +ÎN now corresponds to the
level v1=−sN−1d /2N−H and y1=−ÎN to v2=−sN−1d /2N
+H. Since there is no critical value lower thanv1, the Euler
characteristic for potentials below this level is identically
zero:xsMvd=0,∀v,v1. At the critical point corresponding
to v=v1 the eigenvalues of the Hessian are

h1 = 0,

hi = 1 +H, i Þ 1. sA6d

None of the eigenvalues is negative; thus the critical point is
a minimum and has index zero. The Euler invariant is then
xsMvd=s−1d0 1=1 for v1øv,v2. The next contribution
comes from the critical pointhy1=−ÎN,yi =0∀ i Þ1j at v

=v2=−sN−1d /2N+H. At this critical point the eigenvalues
of the Hessian are

h1 = 0,

hi = 1 −H, i Þ 1. sA7d

We notice that the index of this critical point will depend on
H. For Hø1, this critical point has index 0, hence being a
local minimum; however, forH.1 the index isN−1, and
the critical point is a maximum. Atv=v2 the Euler charac-
teristic becomes

xsMvd = 52 if H ø 1,

0 if H . 1 andN even,

2 if H . 1 andN odd.

sA8d

There is a third solution of the critical point equations which
is given by hy1=−ÎNH,oi=2

N yi =Ns1−H2dj. This solution
only exists forHø1. The corresponding critical value of the
potential energy isv3=H2/2+1/2N, which is higher than the
previous ones for anyH. We have thus two different possi-
bilities: For Hø1, Mv coincides with M [the whole
(hyper)sphere] up from v=v3. For H.1, Mv coincides with
M up from v=v2,v3. Similarly to what was done in the
previous section, we can use this information and simply
identify xsMvd with xsMd=xsSN−1d for either vùv3, or v
ùv2.
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