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Topological hypothesis on phase transitions: The simplest case
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We critically analyze the possibility of finding signatures of a phase transition by looking exclusively at
static quantities of statistical systems, like, e.g., the topology of potential energy subma(®id'y. This
topological hypothesis has been successfully tested in a few statistical models but up to now there has been no
rigorous proof of its general validity. We make a new test of it analyzing the, probably, simplest example of a
nontrivial system undergoing a continuous phase transition: the completely connected version of the spherical
model. Going through the topological properties of its PES it is shown that, as expected, the phase transition
is correlated with a change in their topology. Nevertheless, this change, as reflected in the behavior of a
particular topological invariant, the Euler characteristic, is small, at variance with the strong singularity ob-
served in other systems. Furthermore, it is shown that in the presence of an external field, when the phase
transition is destroyed, a similar topology change in the submanifolds is still observed at the maximum value
of the potential energy manifold, a level which nevertheless is thermodynamically inaccessible. This suggests
that static properties of the PES’s are not enough in order to decide whether a phase transition will take place;
some input from dynamics seems necessary.
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I. INTRODUCTION question that remains to be answered refers to the necessary
. . . . . and sufficient conditions in order that a topology change of
In a series of interesting papef-5 which appeared in s[ubmanifolds of the configuration space reflects the presence

the last few years the possibility has been advanced thaf h i ition. R tlv a th d stati

phase transitions may be signaled by suitable changes (i & phase transition. kecently a theorem was proved stating
some topological properties of the configuration space manighsita? t[%pfcl)]o?grcganr?aesgf t‘;ggz%%rﬁt;gnoi%i?eﬁén tLa;(grg?T(]}
fold. This implies a different approach to phase transitionscoverg a’wide classpof systems with smooth .finite range, and
from the classical one based on singularities of thermOdyE:onfinin otentials bou);\ded from below B,ut althouah :,ﬂ a
namic potentials. The topological hypothesis implies a static 9p ' g

point of view on phase transitions for it is based only Onphase transition a topology change must necessarily happen,

properties of static quantities, like the potential energy mani-the converse is not true. For it is known that topology

fold. Under rather general conditions dynamics seems to pIaﬁg?ggiisi;erilcoimmlothg cr(;r;fé%%r:g(f)r; S?f:;i ;’;'Qggititgre]y#%
no role[7]. This is clearly a strong assumption and, if con- y Imply P P '

firmed at least for a restricted class of systems, should progfé(é’r ;T;O::Iac:gflt%ulgltoask c;ﬁatr? zgdwistﬁﬁ'cﬁggg ('E?anr?slﬂic:)nnss mU
vide a new and powerful approach to understand the micro:- hology 9 P - P

scopic mechanisms underlying a phase transition. Up to nO\RP now the only hints about what those conditions could be

the topological hypothesis has been verified in a few models;°Me from the observed behavior in the exactly sol¥ed

SO . andk-trigonometric models. Specially after the results in the
most notably the Hamiltonia®kY mean field modej4,8], the X .
two-dimensional lattices* model [3], the k-trigonometric XY model the authors conjectured that to entail a phase tran-

. . sition the topology change must involve the attachment of
model [5], and recently in the Bishop-Peyrard model of ; i,
DNA d[er}aturation[G]. Tyhe topology ofpthesye models was handlgs olO(N) different types on the same critical le\{éﬂ.'
investigated by calculating a topological invariant, the EulerWe will show below a much simpler system undergoing a

characteristio/(v) defined on submanifoldsl,, of the poten- phase transition in which this mechanism is not present.
tial energy manifold: M,={qe RN|V(q)U< v}, where In this work we study the connection between the topol-
. v = 3

. . . ogy of the potential energy manifold and the thermodynam-
Y(qlli th ) |s.the potzntllaltﬁneég)ll fun;]:tlon tOf .tht_e syhstem. ics of a very simple model: the completely connected ferro-
n all tn€ previous models the Eu'er characteristic Shows ?nagnetic spherical model. The potential energy manifold of
strong singularity at a critical level, in correspondence with

» this system is a hypersphere and its topology is therefore
the critical values of the energy and temperature at the phasg, - : ; .
transition e;=T./2+(v(To) [(v(T))=vc]. In the Hamil- Yfvial. We first discuss the model without an external field.

) i ) ) X The critical points of the energy function within the domain
tonian XY mean-field model and in thé-trigonometric o {he spherical constraint are two isolated symmetric
model, which is also a mean-field one, it was observed thahinima corresponding to the ground states of the system and
limy_.(1/N)In[x,| is singular atv.. After this evidence the 5 highly degenerate maximum. There are no saddle points.
The submanifoldsM,, at fixedv correspond to two discon-
nected (N-1)-dimensional disks, joining each other and
*Electronic address: anacarol@if.ufrgs.br completing the whole sphere at the maximum layelThis
"Electronic address: stariolo@if.ufrgs.br level coincides with the critical value obtained from thermo-
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dynamics implying the coincidence between the topology

change, the closing of the hypersphere, and the phase transi-

tion, in agreement with the topological hypothesis. Neverthe- -0.1
less, we will see that the Euler characteristic presents at best

/T

only a small discontinuity at the transition point and also -0.2
only one handle is attached at the upper critical level which -0.3
corresponds to the phase transition. This suggests that the

sufficiency condition discussed above does not necessarily ~0.4

relate with the behavior of the Euler characteristic at the

transition. In fact the topology change at the transition level F|G. 1. Internal energy per particle as a function of inverse
in this model seems to be small in the sense that only ongmperature in the completely connected spherical model for zero
handle is attached in order to complete the whole manifoldexternal field(J=1).
Then we discuss the model in the presence of an external

field. The topology is essentially the same as in the previous

S 1 3
case, except that the symmetry between the two minima is — -, T<T,
broken. Now one minimum is the ground state and the other, v=128 2 3
a metastable state. We show that a topology change still ex- o, T>T,.

ists where the hypersphere closes itself, but more impor-

tantly, this sector of the manifold is inaccessible to the physi__Cons_equently at the critic_al ppint the mean potential energy
s v.=v(B.)=0 as shown in Fig. 1.

cal system. As a consequence, this topology chasigeilar ) . X
y N pology chasipe! This is the relevant information needed on the phase tran-

to the one occurring when there is no external jieldnnot L ; ) )
be related with a phase transition, which in fact is destroye§ition in this model in order to test the topological hypoth-
sis. Below it is shown that the leve} corresponds to the

by the presence of a finite field. In order to conclude this we®S'S: . . .
need to add some information from the whole problemMaXimum of the potential energy per particle and precisely

—e.g., knowledge of the caloric curve, which depends on th t this level a topological change takes place in the submani-

dynamics. This suggests that topology alone may be n plds M,.

enough to decide whether a phase transition will take place

for a given interaction potential. B. Finite external field
The saddle point approach whét# 0 leads to a saddle

point equation which has a finite solution for any finite tem-
We studied the completely connected version of the clasperature. Consequently the phase transition is destroyed by

sical spherical model introduced by Berlin and Kdd]. It  the field[11]. In the thermodynamic limit the internal energy

Il. MODEL

consists of a set oN classical spin variablegs e R,i  per particle is given by
=1, ... N} which interact through the potential energy func- 1 H2
tion, v=—-Jz-————, (4)
2B 4)(zs- 1/2)
N N
J wherez is the solution of the saddle point equation:
V-3 ss-HY s, (1) “ point €d
2Ni;&j i 1 ,3H2
-2BJ=0. (5)

— + —_—
zs 2J(z—1/2)?

A plot of the internal energy as a function of8=1/T is
shown in Fig. 2. WhemB— «, v —-=3/2, which is the energy
2 32 =N. (2) of the ground state fdd=1. For—0,v— 0, a value below
the maximum of the potential energy per particle which is
=H?/2=1/2 inthis case. The conclusion is that the sys-

and the spins are subject to a spherical constraint

The exchange coupling> 0 corresponds to a ferromagnetic Umax

interaction,H is an external field, and the factor N /fn the -

energy function is needed in order to make the model exten- 1/T
sive in the thermodynamic limit. -0.2 2 4 6 &8 10

The thermodynamics of the model can be computed ex- -0.4
actly following closely the original solution of Berlin and -0.6
Kac for the finite-dimensional version. -0.8
-1
A. Zero external field -1.2
-1.4

For H=0 a saddle point approach leads to a Curie-Weiss

critical point atB.J=1, whereB=1/T. The internal energy FIG. 2. Internal energy per particle as a function of inverse
per particle behaves as temperature for an external field=1 (J=1).
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tem is unable to reach the levels of potential energy above N
v=0, for arbitrarily growing temperature. This is connected F=V+ M(E yi2— N). (12
with the fact that the phase transition is absent wheis i=1
finite. This behavior is reflected in the topology of the accesy oy the critical points are given b§F/ay;

=0, which give
sible submanifolds of potential energy, as will be seen below. g

N-1
(ZM_ N )Y1=0.
I1l. CRITICAL POINTS AND TOPOLOGY OF THE

POTENTIAL ENERGY MANIFOLD
1 .
A. Zero external field (2/.L + N)yi =0, i1#1. (13

From the previous definition of the model it is clear that . _— _
the whole energy manifold is a hyperspherdidimensions ~From this we have two possibilities, either=(N-1)/2N,
or, in topological language, afN-1)-sphere. At a given Which gives two isolated minimgy,=£N,y;=0,i# 1}, or
level of potential energy the accessible submanifold is rep- #=~1/2N, which gives{y;=0,Z;.,y;=N}, corresponding to
resented by the intersection of the energy surfagevith the @ degenerate maximum, completing the-1)-sphere. Con-
hypersphere. The topology of the energy function is easilysequently, the potential energy manifold has only two critical
revealed by diagonalizing the quadratic form. We can writeSubmanifolds corresponding to the minimum and maximum
[11] values of the function. There are no saddle points. This struc-
ture is trivial and allows us to visualize immediately the
> Ssj = s'Ms, (6) topology changes as the levels increased. This triviality is
ij a property of the completely connected model only. In finite

. . L imensionality th ntial energy manifold is mor
with M the symmetric matrix with all elements equal to 1 space dimensionality the potential energy manifold is more

except for the diagonal ones which are zero. This matrix i%??ﬁéz)l(eaggmﬁgi%dy fad=1 it shows a nontrivial structure

f‘g mmr?trllct:rar?df |?nt]h(tairekl;ore d;]at?]ortlahzed by means of an or- The natural framework for analyzing the relation between
ogonal transformatiol such tha critical points and topology changes in a manifold is Morse

MV, =NV, VIV=Viv=7, (7)  theory[14]. Because of the simplicity of the spherical model,

one can make a very intuitive analysis of the topology
whereV is thek column of the transformation matrix. changes in this case without resorting to Morse theory. The
Applying this transformation to/: topology of the model is analyzed in the context of Morse

theory in the Appendix.

Although we are interested in the behavior of the system
for high dimensionalityN, there is only one direction—
namely,y;—which breaks the spherical symmetry of the po-
wherey=VTs. The spherical constraint is invariant: tential energy function and the problem can then be effec-

N \ tively analyzed in a two-dimensional plane spannedyby
) and any other orthogonal direction. Without loss of general-
E = E Yi- (9) ity, we will consider directly the case witN=2.
=t In Fig. 3 the evolution of the submanifoldg, is shown
From now on we will work in the base which diagonalizes for four increasing values ob. The top left panel corre-

N
sTMs = X \y?, (8)

i=1

M. The eigenvalues; can be readily computed: sponds to a leved below the minimum of the potential en-
ergy per particlep <-0.25. In this case the manifold is
NM=N-1, empty; this is a forbidden region for the system. As the sys-
tem crosses the level=-0.25 a first topology change hap-
MN=-1, k=2, ...N. (10) pens(top right panel. At this level two points are accessible

in configuration space, the symmetric ground states of the
The matrixM possesses one single positive eigenvalue andystem. Above this level the submanifa\d, is diffeomor-
N-1 negative degenerate ones. In the bgsethe energy phic to two disconnectethypendisks (in high dimensiong

function can be written This situation is represented by the bottom left panel in Fig.
3. Note that in théN=2 case the submanifolds corresponding

v:—‘](N_l)y2+iE 2 (11) to a particular level seb are represented by four points,

2N 712NS yi while the submanifold$/, are the fraction of the two semi-

circles for whichV(gq)/N<wv. No more topology changes
For simplicity in what follows we fixJ=1. Now the energy happen in the submanifolds until the maximum value of the
per particle is limited between 1N2-1/2<v<1/2Nor, in  potentialv=0.25 is reached and the whole ciragpherg
the thermodynamic limit, -1/Z2v<0. In order to get the becomes accessible. The bottom right panel illustrates the
critical points of V on the (N-1)-sphere we introduce a situation for a levely slightly below the maximum. Av
Lagrange multiplier to enforce the spherical constraint and=0.25 a new topology change happens; the two disconnected
define sectors of the submanifolddl, meet each other and com-
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v2 ¥z
\\ \\ /,
\ 2 N 2
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\ "1- TN \\ "1— T FIG. 3. (Color onling Evolu-
\\ ) “ ,’ \ ‘\ ! tion of the potential energy mani-
i y d fold of the N=2 spherical model
-3 -—2ft_g 1 ," ¥ -3 -2 *-1 1 ’.| 3 7 for four levelsv=V/N. The col-
,’ ‘\ | 7 ‘\ ! ‘\ . P} ored dashed lines represent the
’ Rl B ,’ Al g \ spherical constrainta circle for
,’ ’ N=2) and a particular level set of
’ 2 ,’ -2 \ the functionv. The real submani-
s ’ . folds depend on the level and
are the continuous black sectors.
s Vs Top left: v=—0.325, the manifold
3 . 5 is empty. Top rightv=-0.25, the
N . , manifold emerges at the two black
N 2 hS 5 Py dots (ground states Bottom left:
. . i R e v=-0.075, two symmetric sectors
S ar] N7 = of the sphere are accessible. Bot-
/\ 7 \ tom right: v=0.2, near the transi-
! ! v1 v1 tion the manifold is nearly com-
-3 -2 k} ‘%’/ z -2 \1 1y 2 pleted and a large fraction of the
sl Py -1 sphere is accessible.
’ N \ o o
s’ -2 * 7 2 \‘\
pid ,” S
’ _3 7 -3 N

plete the manifold, which, for th8l particles system, is the There we show that the Euler characteristic is a constant
(N-1)-sphere. The maximum of the potential energy per parequal to 2 for 1/R-1/2<v<1/2N and jumps to zero at
ticle, v,=1/2N, tends to zero in the thermodynamic limit and v.=1/2N whenN is even or does not change at all férodd.
coincides with the mean potential energy at the phase trans@learly, from the point of view of the behavior of the Euler
tion described in Eq(3) and Fig. 1. This shows that the characteristic the change in topology is not a strong one. In
phase transition takes place at the lewgivhere a topology the next section we consider the model in the presence of an
change in the potential energy submanifolds happens. This &xternal fieldH which destroys the phase transition and ana-
what is expected according to the topological hypothesislyze the consequences in the topology of the configuration
The evolution in the topology of the submanifolils, as the  space.
levelv grows also illustrates in a nice way how the different
sectors of the manifol¥l become gradually accessible to the
physical system. From the ground states, the only accessible
at zero temperature, two symmetric regions of the \whenH+0 the energy function in the diagonal basis can
(hypensphere become gradually accessible in accordancge \ritten
with the symmetry breaking nature of the phase transition in
this model. In the thermodynamic limit the two regions re-
main disconnected until the phase transitiom atwhere the
(hypensphere is completed, the two hemispheres connected,
and the whole configuration space manifold becomes acces- The extrema of this function evaluated on the
sible to the system. (hypensphere are the same extremaFfV+ u(EX,y?—N).
This is a simple and completely intuitive example of the They are given by the solutions of
topological hypothesis at work. Nevertheless, although it was
already expected that a topology change must take place in
correspondence with a phase transitiéh a yet open ques-
tion regards the kind of topology change that might imply a
phase transition. The example of the completely connected
spherical model is again useful in this respect. At variance
with what was observed in previously studied models, in this
case it is clear that the topology change at the transition ighere are two possibilities as in the zero-field case: either
not a strong one, at least as quantified by the change in the=-1/2N or u#-1/2N. In the first case the solution is
Euler characteristic, which is calculated in the Appendix.{y1=—H\e"N,Ei>2yi2=N(1—H2)}. In the second case we obtain

B. Finite external field

v JN-D) ,

”_ J
oN Y1_VNHy1+_E y|2 (14)

2Ni=;

(2 _M‘) _H“N
M N yl_ VIN,

<2ﬂ+$>yi:o, i 1. (15)
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Y2 ¥2
2 ’
\ 2 ’ \ ’
\ ’ . . ’ .
A e nt N 4 \ - o ’ FIG. 4. (Color onling Evolu-
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‘\\ 2 P N o accessible submanifold is the con-
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P -1 ~ is not fully accessible.
I’ \"~ - --" b
’ A ~
’ \\ S
K -2 A Y M.

{y;= i\fﬁ,yi:ODi =2}, Similarly to the caséi=0 there are is led to the conclusion that the only topology changes in the
two minima and a continuously degenerate maximum. Th@resence of a finite external field are at the levels where the
two minima now correspond to a single absolute minimumminima appear and that no other topology change takes place
{y1=VN,y;=00i=2} and to a local minimum{y;=—VN,y; at higher levels ob, provided one restricts the analysis to the
=00i=2}. The corresponding energies per particle afe  physically accessible region of the potential energy manifold.
=-(N-1)/2N-H andv,=-(N-1)/2N+H, respectively. The This is in agreement with the absence of a phase transition in
other critical point is in fact a critical manifold at the maxi- this case: no topology changéno phase transition. Never-
mum of the energy given by;=H?/2+1/2N. In the thermo-  theless, this reading of the results is biased by auriori
dynamic limit the potential energy per particle i/2, a  knowledge of the thermodynamics of the system. In case the
level that is never reached by the system, as shown in Sethermodynamics would not be known one could be led to the
I B. wrong conclusion that a phase transition might take place in
In Fig. 4 it is shown the evolution of the submanifoldls  correspondence with the maximum level of the potential en-
for four increasing values af. One immediately recognizes ergy manifold, where a topology change certainly happens.
the asymmetry introduced by the external field, which inThis suggests that topology alone is not enough in order to
these figures i41=0.1. The top left panel shows the level conclude if a phase transition will or will not take place in a
where the potential energy manifold emerges, correspondingarticular system.
to the ground state, which in this case is unique.vAtH
—1/4 thesecond minimum touches the sphere. This is shown IV. CONCLUSIONS
in the top right panel. As the potential energy grows two
disconnected regions are present, while only one of them is The simplicity of the completely connected spherical
accessible dynamically in the thermodynamic limit. In themodel allows a critical analysis of some important open
bottom right panel it is shown the situation at the maximumquestions regarding the validity of the topological hypoth-
thermodynamically accessible level. The energy per particlesis. Due to its high level of symmetry, it is possible in this
of the maximum forN=2 is v, =H?/2+1/4 andgoes to model to intuitively follow the relation between the topology
H?/2 in the thermodynamic limit. Nevertheless, the resultsof the accessible manifold at any given energy level and its
from the thermodynamics of Sec. Il B predict that the energyphysical or thermodynamic behavior. In particular, the rela-
per particle reaches a maximum at infinite temperature whiction between the topology and the symmetry breaking tran-
is zero, as shown in Fig. 2. Consequently the closing of theition in zero field is nicely illustrated: the phase transition
sphere is never reached by the system; the field introducestakes place in the thermodynamic limit, at the level where
gapAv=H?/2 in the energy per particle that the system canthe whole manifold, the hypersphere, becomes accessible. At
never cross. The situation at the highest physically accessibltis level a simple topology change takes place: the comple-
level is represented in the bottom right panel of Fig. 4. Ondion of the hypersphere. While this is in agreement with a
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recently proved theorem which asserts the necessity of a t@haracteristic for the submanifoldd, for eachv, x(M,),
pology change in order for a system to have a phase transivhich is a topological invariantl4]. It is defined as
tion, in this case the change is very small at variance with

N-1
results from other previously studied models. Small topology _ PN
changes can take place in general with no correlation with a x(M,) = % (- Dby, (A1)
phase transition. This is observed for example in the one-
dimensionalXY model[4]. whereb; are the Betti numbers or the number igfiandles

One can also draw some conclusions regarding the behathat compose the manifolil,. According to Morse theory,
ior of the model in the presence of an external field. In thisthere is a connection between the topological transitions in a
case the comparison between thermodynamics and topologganifold and the critical points of a function defined on it.
of the potential energy manifold can shed some light on théne of the results of Morse theory concerigM,) and is
typical behavior of systems in a field. From a topologicalexpressed by
point of view few changes occur in the structure and evolu- N-1
tion of the submanifold#,. For H=<J the degeneracy be- _ o
tween the two minima is broken in a single ground state and XM,) = % (=D'b=M-o(V). (A2)
a single local minimum, and a third topology change hap-
pens when the hypersphere is closed at the highest enerdjy caseV has only isolated critical pointsl_,(V) is given by

level. From this behavior one should be tempted to predict a N-1
phase transition similar to that in the zero-field case. Never- M_.(V) = —Dim A3
theless, thermodynamics tells clearly that this is not the case; -1(V) % (=1'm, (A3)

there is no phase transition in the presence of a field and the

mean potential energy does not reach the top level of th#ith m; being the number of critical points & with indexi
potential energy manifold even at infinite temperature, a gaghat belong tal,. The index of a critical point is the number
proportional to the square of the field amplitude existing.0f negative eigenvalues of the Hessitnof the function at
Consequently, to correctly read the information it is necesthis point. In order to investigate the critical points of
sary to go through thermodynamics. It seems unlikely thal(Y1, ....yn) constrained to the manifolt!!, we make the
knowledge of the topology of the potential energy manifoldanalysis on the transforrk defined in Eq.(12). In what
alone is enough in order to predict the existence of a phas®llows we will analyze the cas@d=0 andH # 0.

transition in a generic many body system. The results pre-

sented in this work suggest that more information, coming 1. Zero external field

from dynamics, is needed. Results from other models are As we have seen fol=0 the functionF possesses two
clearly needed in order to settle this fundamental questiogyitical levels. One of them gives=V/N=~(N-1)/2N cor-
[15]. Perhaps. the strongest re_sult predlct|_ng dynamical ber'esponding to two isolated critical pOinf¥1=i\*‘NYYi=0,i
havior exclusively from a static property is the celebrated., 1} 1t js possible to verify that there is no real intersection
Adam-G|b_bs relation bgtween relaxation time scalles aNQetween the manifolt and the(hypensurfaces of constant
configurational entropy in glass€33]. It predicts a diver- otential energy fow <—-(N-1)/2N (see top left panel in

gence of relaxation times when the configurational entrop ig. 3. The accessible submanifoM, for v <—(N-1)/2N
. 9. v

S associated with the number of minima of the IOOtem'alis empty, and the Euler characteristic is then identically zero:

energy function goes to zero. To our knowledge this predic- (v<—-(N-1)/2N)=0. The Hessian o¥ is diagonal in the

tion has never been obtained from first principles and eve fy.}. For the tw itical point > £—(N
quantitative comparison with experiments and simulations i?ase yir. FOr the wo critical points appearing a
—1)/2N the eigenvalues of{ are given by

not conclusive.
hl =0 y
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In this appendix we analyze the topological evolution of At v.=1/2N the solutions of Eqs(13) are{yl=O,EiN=2yi2
the accessible manifold as the potential energy of the systemN}, an(N-2)-dimensional critical sphere. In fact, since we
is being increased from its minimum. The complete manifoldhave already seen that at1/2N the manifold completes
M for the system is th¢N—1)-sphere. The function we de- itself into the (hypepsphere M, we know that x(M,)
fine on it isV, the potential energy function. For a given =y(M)=x(SV"1), Jv=1/2N. The Betti numbers for the
value of the potential energy per partialeV/N, the sub-  sphere are well known: am-sphere is composed of a
manifold of accessible configurations is given M;,={y  0-handle and of ai-handle. The Euler characteristic for the
e M|V(y)/N<u}. We thus analyze the behavior of the Euler (N-1)-sphere is then

APPENDIX
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2 if Nodd =v,=—(N-1)/2N+H. At this critical point the eigenvalues
XSV = {0 if N even. (A5)  of the Hessian are
Although x(M,) may not change at. for odd N, one h =0,
knows that a topology change takes place on that level. This h=1-H, i+1. (A7)

result is not contradictory since the behavior of a single to-

pological invariant is not always enough in order to fully \we notice that the index of this critical point will depend on
characterize the topology of a manifold. H. For H=<1, this critical point has index 0, hence being a
local minimum; however, foH>1 the index isN—1, and
the critical point is a maximum. At =v, the Euler charac-

2. Finite external field teristic becomes

For H>0 the points{y; = i\s’N,_yi:O,i + 1} still are solu- 5 itH=1
tions. However, the poiny;=++N now corresponds to the ) '
level v;=—(N-1)/2N-H and y;=~\N to v,=~(N-1)/2N xM,)=10 i H>1andNeven,  (A8)
+H. Since there is no critical value lower thag, the Euler 2 if H>1 andN odd.

characteristic for potentials below this level is identically
zero: x(M,)=0,0v <wv,. At the critical point corresponding
to v=v, the eigenvalues of the Hessian are

There is a third solution of the critical point equations which
is given by {y;=—VNH,=Ly;=N(1-H?}. This solution
only exists forH=<1. The corresponding critical value of the

h,=0, potential energy i®;=H?/2+1/2N, which is higher than the
previous ones for anid. We have thus two different possi-
h=1+H i+1 (Ap)  bilities: For H<1, M, coincides with M [the whole
| 1 .

(hypepspheré up fromv=v3. ForH>1, M, coincides with
None of the eigenvalues is negative; thus the critical point isvi up from v=v,<vs. Similarly to what was done in the
a minimum and has index zero. The Euler invariant is therprevious section, we can use this information and simply
x(M,)=(-1)° 1=1 for v;<v<uv,. The next contribution identify x(M,) with x(M)=x(S\"Y) for eitherv=vs, or v
comes from the critical poinfy;=—\N,y;=00i#1} at v =v,.
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